Chapter 5. Real numbers and completion
We would like to substantiate the determination of the mathematical models. The general cause of the difficulties here is the passage to the limit in the balance relations of the elementary volume as this volume shrinks to a point. The effective method of the substantiation of the convergence is necessary for this procedure. We know that the standard definitions of the limit are non-constructive, because the knowledge of the limit is necessary here. However, we do not know often the fact of the convergence even. 

The existence of the limit of the numerical sequences can be determine by the Cauchy criterion. This method can reduce the convergence of the sequences from its fundamentality. Note that the definition of the fundamental sequence uses the elements of this sequence only. This technique is applicable for some functional spaces too, for example, for the space of continuous functions with standard norm. This circumstance gives us some hope, since in the process of determination of the mathematical physics equations, it is necessary to work with functions, not numbers.
Unfortunately, the Cauchy criterion is not applicable for many metric spaces, particularly, for the sets of rational numbers, positive numbers, continuous functions with integral norm, and Riemann integrable functions. We cannot guaranty the convergence of fundamental sequences there. The Cauchy criterion is applicable for the complete spaces only. Moreover, the majority of the mathematical spaces are non-complete. Therefore, we have the necessity to have the effective method of passage to the limit for the non-complete spaces too.

Note that for all examples of the divergent fundamental sequences there exist points that can be interpreted as generalized limits of these sequences. These points are not the elements of the given spaces. However, it will be the points of its extensions. Thus, the non-complete spaces can be extended to complete spaces. This idea is realized for the Cantor’s definition of the set of real numbers. However, we may doubt that this definition really determines the set of real numbers. Besides, it is not clear whether this technique can be used to investigate the convergence of fundamental sequences in an arbitrary metric space.

We consider, at first, the axiomatic definition of the set of real numbers. Particularly, each set that satisfies the given list of properties is declared as the set of real numbers. We consider the set of infinite decimals as an example. We prove that this set satisfies all properties of axiomatic definition of the set of real numbers. Therefore, this is an interpretation of the set of real numbers. Then we obtain the analogical result for the set of all equivalence classes of fundamental sequences of rational numbers. The generalization of this result to the general metric spaces is the theorem of the completion for the metric spaces. This theorem give us the universal method of the analysis of the convergence for the general spaces. We shell try to use it for the substantiation the determination of mathematical models.
5.1. Axiomatic definition of real numbers 
We determined the real numbers as equivalence classes of fundamental sequences of rational numbers. However, there is not clear whether we obtain real numbers, in reality. Two methods of determining of objects are used in mathematics. In the first case, a concrete object x is directly presented in the finished form or constructed on the basis of a constructive algorithm. In the second case, it is asserted that the determined object is all that possesses a specific property. The first method is called constructive, and the second method is called axiomatic.
Remark 4.4. In intuitionistic and constructive mathematics, only the constructive approach is admissible. 
It is usually customary to give preference to constructive definitions because axiomatic method does not allow us to find the object to be determined, but does not even guarantee its existence. Nevertheless, the domain of applicability of the axiomatic approach is much larger. Therefore, the majority of mathematicians recognizes this method of definition as admissible. The definition of real numbers by Cantor is constructive. However, the axiomatic definition of the set of real numbers is known too.

Definition 4.7. The set of real numbers is the archimedean field with Cauchy principle. 
Remark 4.5. There are other variants of the axiomatic definition of real numbers. In particular, a set of real numbers can be determined as an ordered field with the Dedekind continuity axiom or a maximal ordered archimedean field. Of course, all these definitions are equivalent. However, the Cauchy principle is just must important for us.

One is necessary to verify that the object defined by Definition 4.6 actually satisfies all the properties described in Definition 4.7. Therefore, we determine, at first, all characteristics included in the definition of the Archimedean field and the Cauchy criterion. After that, we will check the performance of all the necessary properties.
 We have already known what the Cauchy criterion is. This is determined with using the metric. A field is an algebraic concept that is defined by operations. However, it is necessary to have an order relation too for defining the Archimedean field. Consider, at first, algebraic properties. 

The field is a mathematical object with many operations. Determine, at first, a set with unique binary operation that has special properties.
Definition 4.8. Let us have a set X and binary operation ( here, i.e. for all elements x and y from X it is determined an element x(y from X. The set X with operation ( is called the group, if the following properties holds
i) 
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 (associativity);
ii) there exists an element e(X such that 
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 (existence of the unit);

iii) for all x(X there exists an element x-1(X such that 
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 (existence of the inverse element).
This group is called abelian if it satisfies extra the following condition
iv) 
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 (commutativity).

The set with binary operation in the general case is called the groupoid. The groupoid with associativity is called the semigroup. The semigroup with unit is called the monoid (see Table 4.2).   

The set of integer numbers with operation + (addition) is the abelian group with unit 0 and inverse element –x for all number x. The set of non-degenerate matrixes (its determinant is not equal to zero) with matrix multiplication is the group only, because the multiplication of matrixes is not commutative. The addition is the associative operation on the set of non-negative integer numbers; the number zero is unit here. However, this is not group, because each its non-zero element does not have an inverse element. The addition is the associative operation on the set of natural numbers too. However, the unit does not exist here. The subtraction is non-associative operation on the set of integer numbers. Particularly, 
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 The subtraction is not operation on the set of natural numbers, because the difference between two natural numbers can be negative.
Table 4.2. Classification of algebraic objects. 
	Set
	operation
	missing property
	algebraic class

	integer numbers
	addition 
	–
	abelian group

	non-degenerate matrixes
	multiplication
	commutativity
	group

	non-negative integer numbers
	Addition
	existence of inverse elements
	monoid

	natural numbers
	addition
	existence of unit
	semigroup

	integer numbers
	subtraction
	associativity
	groupoid

	natural numbers
	subtraction
	operation
	not a groupoid


Now we determine a set with many operations.
Definition 4.9. Let us have a set X with two binary operations + (addition) and ( (multiplication). The set X with these operations is called the field if the following properties holds
i) the set X with addition is the abelian group with unit 0 and inverse element –x for all x(X ;

ii) the set X with multiplication is the monoid with unit 1 and inverse element x–1 for all element x of X that is not equal to 0; besides the multiplication is commutative;

iii)  x ( (y + z) = (x ( y) + (x ( z),  (y + z) ( x = (y ( x) + (z ( x) for all x,y,z(X (distributivity).
The set Q of rational numbers is the field. By Definition 4.7, the set of real numbers is the Archimedean field. The field is the algebraic object. However, it is necessary to definite a non-algebraic notion for determining the archimedean field.
Definition 4.10. A set X with relation ( is called the ordered set if this relation is reflexive, transitive, and from x(y and y(x it follow always x = y (antisymmetry). This relation is called the order. The ordered set is called linear ordered set, if for all elements x,y of X we have x(y or y(x.
Note the following examples of the order: the usual relation ( for the numerical sets, the divisibility for the natural numbers, and the enclosure for sets. First of them is linear ordered set. Others are not linear ordered sets. Let us have the ordered set (X,(). If x(y and x(y, then we write x<y or y>x.
We considered sets with operations and order separately. Now we determine sets with operations and order simultaneously.
Definition 4.11. A set X is the ordered field if this is the field with linear order, and the following properties hold 
i) if x(y, then  x + z ( y + z for all z(X ;

ii) if 0(x and 0(y then 0(xy.
Remark 4.6. The ordered field is the set that the field and the linear ordered simultaneously such that its algebraic and ordered properties are consistent.  
The set of rational numbers with standard operations and order is the ordered set.
Definition 4.12. An ordered field X is the archimedean field if the following archimedean axiom holds: for all elements x,y such that 
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 there exists a natural number n such that the sum of n elements x is greater than y.
The set of rational numbers with standard operations and order is the archimedean field. We would like to prove that the factor-set F/( of Definition 4.6 satisfies all properties of Definition 4.7, i.e. this is in reality the set of real numbers. However, at, first, we consider another definition of real numbers.  
4. 21. Real numbers by Weierstrass
We determined the real numbers with using the fundamental sequences. However, this numerical class is determined often by another method. Particularly, the real numbers can be interpreted as the infinite decimals. This is definition of Weierstrass.
Definition 4.21. The real numbers by Weierstrass are the infinite decimals +x0,x1x2x3… or –x0,x1x2 x3…, where x0 is a natural number or zero, а x1, x2, x3,… are decimal digits. Besides, +x0,x1x2…xm–1xm(9) or –x0,x1x2…xm–1xm(9) (infinite sequence of digit 9 beginning with (m+1)-th symbol after the comma) and +x0,x1x2…xm–1a(0) or –x0,x1x2…xm–1a(0) (infinite sequence of digit 0 beginning with (m+1)-th symbol after the comma) respectively are the same real number, where xm≠9, a=xm+1. 
The value before the comma «,» of the definition of the real number is called the integer part of number, and the value after the comma is called the fractional part of number. 

Remark 4.21. One could choose another number system instead of decimal. 

Remark 4.22. We shell consider p-adic numbers (see Caption 6). These objects can be interpreted as infinite fractions, the basis of which is a prime number p, but with an infinite number of digits not after, but before the comma.
The set of all real numbers by Weierstrass we denote by RW. If the values x0, x1, x2,… are equal to zero, then this real number is called zero, besides, +0,00… and –0,00… are the same number, which is denoted by 0. The numbers +x0,x1x2x3… are called positive; and the numbers 
–x0,x1x2x3… are called negative. We use the short denotation x0,x1x2x3… for the positive real number +x0,x1x2x3… .
Remark 4.23. Obviously, the real number by Weierstrass x0,x1x2x3… can by obtained as the equivalence class of the fundamental sequences (see Caption 4) with representative {yk}, where y1 = x0, 
y2 = x0,x1, y3 = x0,x1x2, y4 = x0,x1x2x3, etc. The negative real number by Weierstrass can be determined analogically. Therefore, the interpretation of real number by Weierstrass can be reduced to its interpretation by Cantor.
Consider the relations between the real numbers by Weierstrass and others numerical sets. Obviously, there exists the bijection between all real numbers x0,(0) with x0≠0 and the set N of natural numbers. These real numbers are called integer. 
Example  5.1. Rational numbers. The rational number, i.e. the element of the set Q, is a fraction p/q, where p is an integer number, and q is a natural number. Consider as the example the rational number 25/4. Divide the number 25 by 4. The result 6,25 can be associated with the real number by Weierstrass 6,25(0). Consider now the rational number 25/11. Dividing the number 25 by 11, we determine integer 2 with infinite number 27 of times after the comma. This result can be associated with the real number 2,(27), where the value 27 is repeated an infinite number of times. (
One can prove that each rational number is uniquely representable as an infinite decimal fraction x0,x1x2…xm(0) or –x0,x1x2…xm(0) with infinite number 0 of times after position m (we use the short denotation x0,x1x2…xm or –x0,x1x2…xm for these numbers) or an infinite decimal fraction a natural number is repeated an infinite number of times starting at some position. These real numbers are called periodic. The real numbers by Weierstrass is called rational, if this is periodic decimal; this is irrational real number, if this is not rational. Obviously, there exists the bijection between the standard rational numbers, i.e. the fractions p/q and the rational real numbers by Weierstrass. Note that the rational real numbers only can be non-uniquely represented as infinite decimal with infinite numbers 0 and 9 of times. We will always use the first version of a representation with an infinite number of zeros.

We would like to prove that the set of real numbers by Weierstrass satisfies all properties of Definition 4.7. Then it is necessary determine operations, an order, and a metric on the set RW.

 Determine, at first, the order there. The real numbers x and y are equal, if these numbers have the same sign, and all digits of its decimal representations of the same position are equal. The absolute value |x| of x is this number, if this is positive or zero. This is the number x0,x1x2x3…, if one considers the negative number–x0,x1x2x3… . For any positive real numbers by Weierstrass  x and y the relations x<y and y>x are true, if there exists an index m = 0, 1, 2, ... such that xm < ym, and xi = yi for all i less than m. Each positive real number x is greater than zero, i.e. x>0; and each negative number x is less than zero, i.e. x<0. Therefore, each negative real number is less than arbitrary positive number. Finally, for all negative numbers x and y the relations  x<y  and  y>x  are true, if –y<–x. Now we determine the order on the set of real numbers by Weierstrass.  
Definition 4.22. For all numbers x,y(Rw the relation x≤y is true, if x=y or x<y.
Remark 4.24. Of course, it is necessary to prove that this is the order in reality. We shell prove it at the next section.

Determine additional notions. Non-empty subset X of Rw is upper bounded, if there exists a number c such that x≤c for all x(X. This is lower bounded set, if there exists a number c such that c≤x for all x(X. The set is called bounded if this is lower bounded and upper bounded set. The number c is called the least upper bound of the numerical set X, if for any x(X the following inequality holds x≤c; and for all number c0<c there exists a number x0(X such that c0<x0. The least upper bound of the set X is denoted by sup X or 
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. The number c is called the least lower bound of the numerical set X, if for any x(X the following inequality holds c≤x; and for all number c0>c there exists a number x0(X such that x0<c0. The least lower bound of the set X is denoted by inf X or 
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. For example, the number 0 is the least upper bound of the set of all negative real numbers and the least lower bound of the set of all positive real numbers. Obviously, the exact upper and lower bound of any set, if it exists, is uniquely determined. Any lower bounded set has an least lower bound, and any upper bounded set is an least upper bound. 
Remark 4.25. We shell use these notions in Chapter 7 for the analysis of the optimal control problems. 
Determine algebraic operations on the set Rw.

Definition 4.23. The sum of real numbers by Weierstrass x and y is the number (see Figure 4.21)
x+y = sup(a+b),

where the least upper bound is determined on the set of all rational numbers x and y such that a≤x and b≤y. 


[image: image10.wmf] 

o

 

·

 

 

a

 

o

 

 

x

 

·

 

 

b

 

 

y

 

o

 

·

 

 

a+b

 

 

x+y

 


Figure 4.21. Addition of real numbers.
Definition 4.24. The product of non-negative real numbers by Weierstrass x and y is the number 
xy = sup(ab),

where the exact upper bound is determined on the set of all rational numbers x and y such that a≤x and b≤y. If the numbers x and y are negative, then xy = |x||y|. If we have the product of negative and non-negative numbers, then we have xy = −(|x||y|).
Determine a metric on the set Rw.

Definition 4.25. The metric on the set of real numbers by Weierstrass is determined by the equality 
((x,y) = | x – y |  ( x,y( Rw.

Now we prove that the set Rw satisfies all ordinal, algebraic, and metric properties of Definition 4.7. 
Remark 4.26. There exists also the definition of real numbers by Dedekind, which is based on the properties of the order. This definition satisfies to all properties that is described by Definition 4.7. Therefore, this is equivalent to the definition by Weierstrass.  
4. 22. Properties of real numbers by Weierstrass
We begin with the order properties.

Theorem. 4.21. The set Rw with relation ≤ is the liner ordered set.

Proof. It is necessary to prove that the relation ≤ on the set Rw is reflexive, transitive, and antisymmetric, i.e. this is the order; besides, this order is linear. The reflexive properties, i.e. the inequality x≤x for all x, and the comparability of any real numbers x and y that is the linearity of the order follow from the definition of the relation ≤. 

Suppose now real numbers x and y satisfy both inequalities x≤y and y≤x. If these numbers are not equal, then we obtain the conditions x<y and y<x. However, this case is impossible by the definition of the relation < on the set Rw. Then the equality x=y is true. Therefore, the relation ≤ on the set Rw is antisymmetric. 

Now suppose the following inequalities hold x≤y, y≤z for all real numbers by Weierstrass x, y, and z. If one of these conditions at least is satisfied in the form of equality, then the inequality x≤z is obviously. Let us have the conditions x<y, y<z.
Suppose the number x is positive. Then the numbers y and z are positive too. Consider the representation of the given real numbers as decimals 
x = x0,x1x2...; y = y0,y1y2...; z = z0,z1z2... .
From the inequality x<y it follows the existence of the index m such that xm<ym, and  xi = yi for all i that less than m. Analogically, from the inequality y<z it follows the existence of the index n such that yn<zn, and yi = zi for all i that less than n. Denote the minimal of the numbers m and n by l.  Then xi = yi = zi for all i = 0,1,…,l−1. Besides, following inequalities hold xl ≤ yl and yl ≤ zl. One of these inequalities is strict. Therefore, we have the strict inequality xl<zl, because the relation ≤ is transitive on the set of natural numbers, and the equality xl=zl is impossible in case of stringency of one of the previous inequalities. Thus, we have x<z. 

If x=0, then the number y is negative. Using the transitivity of the relation < for the positive real numbers, we obtain |z| < |x|. Therefore, we have again x<z. Thus, the transitivity of the relation ≤ on the set Rw is proven. This complete the proof of Theorem 4.21.  (
Consider additional ordinal properties of real numbers. 
Lemma  4.21. Suppose x and y are real numbers such that x < y. Then there exists a rational number a such that x < a < y. 

Proof. Consider the numbers 

x = x0,x1x2...,  y = y0,y1y2... .

Let the number x be positive. Denote by k the minimal index such that xk < yk. Choose the index m>k such that xm < 9. Then we determine a = x0,x1... xm−1z, where the digit z is equal to xm +1. We obtain x < a < y. If the numbers x and y have the different signs, the we can determine a = 0. Finally, if y(0, then we can find the rational number b such that |y| < b < |x|. Now we determine 
a =−b, and the inequality x < a < y is true. ( 

Lemma  4.22.  For any real number x the following equality holds x = sup a with exact upper bound on the set of all rational numbers such that a ( x. 

Indeed, from Lemma 4.21 it follows that for all real number y < x there exists a rational number a such that y < a ( x. This complete the proof of Lemma 4.22.

Theorem  4.22. The set Rw with operation + and order ≤ is the ordered abelian group. 
Remark 4.27. We determined before the ordered field (see Definition 4.11), where the order relation was agreed with the operations of addition and multiplication. Now we have addition only. Thus, the set with group operation + and linear order ≤ is the ordered group, if the inequality x + z ( y + z is true for all element z of this set whenever x(y.
Proof of Theorem 4.22. The sum of all two real numbers by Weierstrass is the real number too, i.e. the addition is in reality the operation on the set Rw. The commutativity of the addition follows from the definition of the sum there. 
2. Suppose the inequality x(y. For arbitrary number z find the sum 
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Using the inequality x(y, we get
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Then we obtain x + z ( y + z.

From this property, it follows the possibility of the addition of the inequalities. Particularly, from the inequalities x(y and u(v it follows that 

x + u ( y + u,  y + u ( y + v.
By transitivity of the order, we have x + u ( y + v.
3. Prove the associativity of the addition. Consider arbitrary real numbers x, y, z. Denote
u = (x + y) + z,  v = x +(y + z).
Suppose the numbers u and v are not equal. For example, let the following inequality u < v be true. Using Lemma 4.21, consider the rational number a and b such that 

u < a < b < v.

Choose a natural number n such that
                                                                 b − a  > 3·10−n.                                                       (4.21)

Consider rational numbers ξn, ηn, (n with n digits after the comma such that the following inequalities holds  

ξn ≤ x ≤ ξn +10−n, ηn ≤ y ≤ ηn +10−n, (n ≤ z ≤ (n +10−n. 

Adding these inequalities, we get
ξn + ηn + (n ≤ (x + y) + z ≤ ξn + ηn + (n + 3·10−n. 

Denote
rn = ξn + ηn + (n.

Then we obtain
rn ≤ u ≤ rn + 3·10−n.

We have also the analogical inequality
rn ≤ v ≤ rn + 3·10−n.

Using the properties of the number a and b, we have
rn  < a < b < rn + 3·10−n.

Therefore, the following inequality holds
b − a  < 3·10−n.
However, this contradicts to the condition (4.21). Hence, our supposition about non-equality of the numbers u and v is false. Thus, we proved the associativity of the addition on the set Rw.

4. For all number x∈Rw we have
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The object at the right-hand side of this equality is x by Lemma 4.22. Using the commutativity of the addition on the set Rw, we prove that the number 0 is, in reality, zero on this set.  

5. Now we prove the existence of the inverse element. Consider a real number x and the rational number ξn with n digit after the comma such that 
ξn ≤ x ≤ ξn +10−n.

The number –x that is the number x with inverse sign satisfies the inequality 
 −ξn −10−n ≤ −x ≤ −ξn.

Adding two last inequalities, we get
−10−n ≤ x + (−x) ≤ 10−n.
Thus, we have
| x + (−x) | ≤ 10−n.
Suppose the first non-zero digit after the comma for the number x + (−x) is at the m-th position. Then the following inequality holds 
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However, this contradicts the previous inequality for n = m. Thus, all digits of the decimal x + (−x) are zero. Then x + (−x) = 0. (     

Theorem  4.23. The set Rw with addition, multiplication, and order is the archimedean  field. 

Proof. 1. Obviously, the product of two arbitrary real numbers by Weierstrass is the real number too, i.e. the multiplication is reality the operation on the set Rw too. Its commutativity follows from the definition of the multiplication here. 
2. For all number x we have
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Then x0 = 0x = 0 for all real number x.

3. Consider non-negative real numbers x and y. Prove that its product is non-negative too. We have
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Using the non-negativity of the number x, we get
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From two last conditions, it follows that the product xy is non-negative.

4. Prove the possibility of the multiplication of the inequality with non-negative values. Suppose the following inequalities hold
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We have
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Thus, 
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5. Prove the associativity of the multiplication of real numbers. Consider real numbers x,y,z. If one of them at least is equal to zero, then the associativity property is obvious. In the presence of negative multipliers, the proof of the associativity reduces to analyzing the corresponding absolute values and taking into account the sign of the product. Thus, it suffices to consider the case when all the numbers under consideration are positive. 

Denote
u = (xy)z, v = x(yz).
Consider rational numbers ξn, ηn, (n with n digits after the comma such that the following inequalities hold
ξn ≤ x ≤ ξn +10−n, ηn ≤ y ≤ ηn +10−n, (n ≤ z ≤ (n +10−n. 

Multiplying these inequalities, we get
ξn ηn (n  ≤ u ≤ (ξn +10−n) (ηn +10−n) ((n +10−n).

The value at the right-hand side of this inequality can be transformed to the sum 
(n + (n, where (n = ξn ηn (n, and the rational number (n has the order 10−n. Then we have the inequality
                                                               (n ≤ u ≤ (n + (n.                                                       (4.22)  

The condition
(n ≤ v ≤ (n + (n. 

can be obtained analogically. Then we get
−(n −(n ≤ −v ≤ −(n.

Adding this result with (4.22), we obtain
| u−v | ≤ (n.

Repeating the final part of the associativity of the addition (see Theorem 4.22, step 3), we have u=v. Thus, the multiplication on the set Rw is associative too. 

6. Determine the property of unit. If the number x is non-negative, then we obtain the equalities 
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Therefore, 1x = x = x1 for all x of the set Rw. Analogical result can be obtained for the negative x after the transformation to the corresponding absolute value. 
7. Prove the existence of the inverse element with respect to the multiplication for all non-zero real number x. Suppose this number is positive. Consider the number 
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The existence of the exact upper bound follows here from the upper boundedness of all numbers 1/a because of the condition 
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                                                                ξn ≤ x ≤ ξn +10−n.                                                     (4.24)  

From the equality (4.23) it follows that
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If 1/ξn is less than 1/x, then there exists number a such that 

a>x, 1/ξn < 1/a.

Therefore, we get a < ξn. Using the inequality ξn ≤ x, we conclude that a < x. From this contradiction is follows that 1/ξn > 1/x. Hence, we obtain
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Multiply this inequality and (4.24). We have 
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Now we get
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Thus, the following inequality holds
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Suppose the m-th digit after the comma of the number x is not equal to zero. Therefore, we have the inequality 
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 From the previous inequality it follows that 
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The number n is arbitrary here. Therefore, we get 
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Thus, the number 1/x is inverse to x. 

If the number x is negative, then 
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Multiply it by x and use the previous result. We obtain the number 1 of this product. Therefore, the negative real numbers are invertible too with respect to the multiplication.  
8. Now prove the distributivity. Consider real numbers x,y,z. If one of them is zero, then this property is obvious. Suppose, at first, that the sum x+y and the number z are positive. Consider again the rational numbers ξn, ηn, (n with n digits after the comma such that 

ξn ≤ x ≤ ξn +10−n, ηn ≤ y ≤ ηn +10−n, (n ≤ z ≤ (n +10−n. 

Then we have
ξn + ηn ≤ x + y ≤ ξn + ηn + 2 10−n.                                             

After multiplication we get
                                  (ξn + ηn)(n ≤ (x + y)z ≤ (ξn + ηn + 2 10−n)((n +10−n ).                      (4.25)

Suppose the numbers x and y positive. After multiplication we obtain 

                                               ξn (n ≤ xz ≤ (ξn +10−n) ((n +10−n),                                       (4.26)

                                               ηn (n ≤ yz ≤ (ηn +10−n) ((n +10−n).                                       (4.27) 

Adding these inequalities, we have 

                                 ξn (n + ηn (n ≤ xz + yz ≤ ((n + ηn +2 10−n) (ξn +10−n).                        (4.28)                  

The values at the right-hand sides of the inequalities (4.25) and (4.28) can be transformed to the sum (n + (n, where (n = (ξn + ηn (n) , and the rational number (n has the order 10−n. Then we get
(n  ≤ (x + y)z ≤ (n + (n,

(n  ≤ xz + yz ≤ (n + (n.

From the last inequality, it follows that
–((n + (n ) ≤ –(xz + yz) ≤ –(n.

Adding with previous inequality, we get 

–(n  ≤ (x + y)z – (xz + yz) ≤ (n.

Therefore, we obtain (see the final steps of the proving of the associativity of the addition and the multiplication) 
                                                              (x + y)z = (xz + yz).                                                  (4.29)

Suppose the number z is again positive, but one of the numbers x and y, for example, y is negative. Then we can determine the inequalities (4.25) and (4.26), not (4.27). Multiply the inequalities
–(ηn +10−n) ≤ –y ≤ –ηn,  (n ≤ z ≤ (n +10−n.

We have
–ηn(n – (n 10−n ≤ –yz ≤ –ηn(n – ηn 10−n.

Add it with the inequality
                                            –(ξn +10−n) ((n +10−n) ≤ –xz ≤ –ξn(n,                                       

which is the corollary of (4.26). We have
–ηn(n – (n 10−n –(ξn +10−n) ((n +10−n) ≤ –(yz + xz) ≤ –ηn(n – ηn 10−n –ξn(n.

Add this inequality with (4.25). We obtain
–10−n (ξn + 2(n +10−n) ≤ (x + y)z – (yz + xz) ≤ 10−n (ξn + 2(n +10−n).

Applying the known method, we get again the distributivity condition (4.29).

The case of the negative values of the multiplier z can be reduced to the previous case after the transformation to the corresponding absolute value. Thus, the set Rw with considered operations and order is the ordinal field. 
9. Prove that this field is archimedean. Consider the positive numbers 

x = x0,x1x2…, y = y0,y1y2… 

such that 0 < x < y. If the number x0 is non-zero, then we have the inequalities x0 ( x and 
y ( y0 + 1. Then for the natural numbers x0 and y0 + 1 there exists a natural number n such that
nx0 > y0 + 1. Now we have 
y ( y0 + 1 < nx0 ( nx.
Therefore, the Archimed axiom is realized. 
Suppose the first non-zero digit of the decimal representation of the number x is in the 
m-th position after the comma. Than the following inequality holds xm (10m x. For the natural numbers xm, y0 and natural number l such that lxm > y0 + 1. Now we have
y ( y0 + 1 < lxm ( 10m l x.

Finally, determine n = 10m l. This complete the proof of the theorem. (
It remains for us to verify that the Cauchy criterion is true on the set of real numbers by Weierstrass. By the definition of convergence for the real numbers (see Caption 3), the sequence of real numbers {xk} tends to a number x, if for any (>0 there exists a number k=k(() such that | xk – x | < (  for all k that is greater than k((). Determine additional properties of convergence.
Theorem 4.24 (The principle of nested segments, see Figure 4.22). We consider a sequence of segments such that each successive of them is embedded in the previous one. If the sequence of lengths of these segments tends to zero, then there exists a unique number belonging to all segments.
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Figure 4.22. Principle of nested segments.
Proof. We have a sequence of segments {[ak,bk]}. All segments belong to [a1,b1]. Then the sequence {ak} of its left ends is bounded by the number b1. Consider the number x = sup ak. By definition of the exact upper lower bound, the following inequality holds ak ( x for all k. If there exists a number k such that bk < x, then the inequality bk < al for a number l. Then the intervals [ak,bk] do not have [al,bl] common points. Then we have the inequality x ( bk for all k. Then the point x belongs to all considered segments. Suppose there exists another point y with same property. Let for definiteness the following inequality x < y be true. From the inequalities ak ( x and y ( bk it follows that
bk − ak > y−x > 0,  k = 1,2,... .

Therefore, the lengths of the intervals do not tend to zero. This contradicts the conditions of the theorem. Thus, the common point of the nested segments is unique. (
One of the most important result of the mathematical analysis is the Bolzano–Weierstrass theorem.

Theorem 4.25. For all bounded sequence of real numbers there exists a convergent subsequence. 

Proof . Consider a bounded sequence {xk}. Then all its elements belongs to an interval [a,b]. Divide this segment in half. One of its halves at least contains infinitely many elements of the given sequence. Denote this halve by [a1,b1]. Let 
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 be an element of this sequence belonging to the last interval (see Figure 4.23). Divide the segment [a1,b1] in half. Denote by [a2,b2] the halve with infinite set of elements of the sequence {xk}.  Choose an element of this sequence with number k2 > k1  belonging to the interval [a2,b2] (see Figure 4.23). Then we divide the new segment in half and choose such halve that has the infinite of elements of the given sequence. Choose an element of this sequence with number k3 > k2, etc. We obtain the sequence of nested segments {[ak,bk]}; besides, each interval contains the infinite set of elements of the sequence {xk}. The lengths of these intervals tends to zero. We have also the numerical sequence 
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 with strictly increasing indexes. By Theorem 4.24, there exists a point x belonging to all segments [ak,bk] (see Figure 4.23). By the convergence of these lengths to zero, for any ε>0 there exists a number k(ε) such that
[ak,bk] ( [x–ε, x+ε] ( k>k(ε).

Using the definition of the numbers 
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, we obtain the inequality
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 ( kn >k(ε).

Therefore, we have the convergence 
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 Thus, for any bounded sequence of real number by Weierstrass one can extract a convergent subsequence. (
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Figure 4.23. Proof of the Bolzano–Weierstrass theorem.
Remark 4.28. We shell use the Banach–Alaoglu theorem (see Caption 7 and Caption 9), which is the generalization of the Bolzano–Weierstrass theorem to the large enough class of linear normalized space.
Now we prove the final assertion of this section.
Theorem  4.26. The metric space Rw is complete.
Proof. Consider a fundamental sequence {xk}. Therefore, for any value ε > 0 there exists a number k(ε) such that  | xn – xm | < ε  for all m and n greater than k(ε). Particularly, for  ε = 1  there exists a number k such that  n,m > k the following inequality holds | xn – xm | < 1. Determine 
m = k  + 1. We have
| xn − xk+1 | < 1 (n>k.

Then we obtain
| xn | = | xn − xk+1 + xk+1 | < 1 + | xk+1 |.

Denote
c = max{|x1|, |x2|, ..., |xk|, 1+|xk+1|}.

We obtain the inequality | xn | < c for all large enough n.

Thus, the sequence {xk} is bounded. Using the Bolzano–Weierstrass theorem, we prove the existence of its subsequence 
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 that has a limit x. For any ε > 0 the exist numbers k1, k2 such that
| xn – xm | < ε/2  (n,m >k1,
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Denote k = max(k1,k2), and kn >k. For all n > k we have
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Thus, the whole sequence {xk}, and not only its subsequence, converges to x. We proved that each fundamental sequence of the set Rw is convergent. Therefore, this metric space is complete. (
Thus, the set of rational numbers by Weierstrass satisfies all properties of Definition 4.7. Therefore, we can the standard denotation R instead Rw for this set.
4.5. Properties of real numbers by Cantor
Now we can return to the consideration the factor-set RC = F/( of Definition 4.6. Prove that after definition operations and an order there we get in reality the set of real numbers by Definition 4.7.

Determine the addition of the real numbers. Let x and y be real numbers by Definition 4.6. These numbers are determined by fundamental sequences of rational numbers {xk} and {уk}. Therefore, we have the equalities х = [xk], y = [yk]. Consider the sequence of the sums {xk + уk}. We have the inequality
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The sequences {xk} and {уk} are fundamental. Therefore, the terms at the right-hand side of the previous inequality tend to zero as 
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. Thus, the sequence of sums {xk + уk} is fundamental too. Then it determines a real number by Definition 4.6. It is called the sum  х + у  of the numbers х and у (see Figure 4.9). Thus, for all pair of real numbers we can determine its sum that is a real number too. However, we have the serious question. Is the sum depends from the choice of the fundamental sequences that determine the given real numbers?
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Figure 4.9. Operations for real numbers.

Choose other fundamental sequences of the rational numbers 
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 that determine the same real numbers x and y. Then we have the inequality
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The sequences {xk} and 
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 are equivalent because it determine the same real number, and the sequences {уk} and 
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 too. Therefore, the value at the right-hand side of the final inequality tends to zero. Hence, the sequences of sums {xk + уk} and 
[image: image52.wmf]{}

kk

xy

¢¢

+

 are equivalent. Then it determines the same real number. Thus, the sum х + у does not depend from the choice of the fundamental sequences that determine the summands. This is determined by the whole equivalence classes that are the summands. Therefore, the sum is determined unequivocally.
Lemma 4.1. The set 
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 with operation + is the abelian group.
Proof. Consider real numbers х = [xk], y = [yk]. Using the definition of the addition here, we have the equalities 
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because of the commutativity of the addition for the rational numbers. Thus, the addition of the real numbers is commutative.

Now consider three real numbers х = [xk], y = [yk], and z = [zk]. We get 
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because of the associativity of the addition for the rational numbers. Therefore, the addition of the real numbers is associative too.

Determine the real number 
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 that is determines by a sequence of rational numbers {rk} with zero as the limit. Then for all number х = [xk] we have
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because the sequence {rk} tends to zero. Therefore, the number ( is the zero element on the set 
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 with respect to the given addition. We denote it by 0.
Now for all real number х = [xk] we determine the number -х that is equal to [-xk]. We have

[image: image59.wmf][

]

[

]

()(0,

)

kk

k

xxxxr

+-=+-==


because the sequence with zero elements only is equal to {rk}. Hence, the number -х is inverse to x with respect to the addition. Thus, the set of real number that is determine by Definition 4.6 is the abelian group. (
Analogically, we can determine the product xy of the real numbers x and y as the real number that is determines by the sequence of product {xkуk} (see Figure 4.9), where the fundamental sequences of rational numbers {xk} and {уk} determine the given real numbers. Of course, it is necessary to prove that the sequence of product is fundamental, and the result does not depend from the fundamental sequences that determine the numbers x and y. We can prove also that this multiplication of real numbers is commutative and associative. Besides, there exists a unit with respect to the multiplication that can be denoted by 1. Then for all non-zero real number there exists an inverse number with respect to the multiplication. Finally, the following distributive condition holds 
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 All these properties are substantiate by the known technique. Thus, we have the following result.

Lemma 4.2. The set 
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 with addition and multiplication is the field.
We determine now the order on the set of real numbers. The fundamental sequence of rational numbers is called positive, if there exists a positive rational number r such that all elements of this sequence with large enough numbers are greater than r. If the fundamental sequence is positive, then each equivalent fundamental sequence is positive too. Therefore, the positivity is the same property of all equivalent fundamental sequences. Then we say that the real number is positive, if it is determined by positive fundamental sequences of rational numbers (see Figure 4.10). The relation 
[image: image62.wmf]xy

<

 for real numbers x and y is true, if the difference 
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Figure 4.10. Positivity of a real number.

Lemma 4.3. The set 
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 with relation ( is the linear ordered set.
Proof. Of course, 
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, where х = [xk], y = [yk], and z = [zk]. Then there exists positive rational numbers r and s such that 
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 is obviously. Suppose we have both inequalities. Then we have 
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and the inequality 
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 is true. Hence, the relation (  is transitive. 

Suppose now the following inequalities holds: 
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, where х = [xk], y = [yk]. If we do not have the equality 
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 are true. Using the first inequality, we determine the existence of the positive number r such that 
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 for all large enough number k. Using the second inequality, we determine the existence of the positive number s such that 
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 for all large enough number k. Then we have both inequalities 
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 for all large enough number k that is impossible. Therefore, the equality 
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 is true. Thus, the relation ( on the set of real numbers is the order in reality.
Prove the linearity of the order. Consider arbitrary elements х = [xk], y = [yk]. If the sequences {xk} and {yk} are equivalent, then we have the equality 
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. Suppose now these sequences are not equivalent. Then there exists a number n such that we have the inequality 
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 for all k>n because these sequences are fundamental. If the first inequality is true, then we have 
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 by the definition of the order. Analogically, from the second inequality, it follows that 
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 Thus, we have the linear ordered set. (
We proved the algebraic and ordered properties separately. Now we determine the following result.
Lemma 4.4. The set 
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 is the archimedean field.
Proof. Suppose for any elements х = [xk], y = [yk] of 
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 we have the inequality 
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 for all large enough number k. Then for all z = [zk] we have  х+z = [xk+zk], 
y+z = [yk+zk], and 
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 for large enough k. Therefore, we get (х+z) ( (у+z). Suppose 0(x and 0(y. Then we have the inequality 0(xk and 0(yk for large enough k. Hence, 0(xkyk for large enough k. Therefore, 0(xy. Thus, the set 
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 is the ordered field.
Prove that the archimedean axiom is true too. Consider an element  z = [zk] of 
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. The sequence {zk} is fundamental. Therefore, this is the bounded sequence. Then there exists a natural number m such that 
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, where n is the real number determined by the stationary sequence with element m. Consider elements x and y such that 
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. Thus, archimedean axiom is true, and the set 
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 is the archimedean field. (
Determine now metric properties of the set of real numbers. For real numbers х = [xk] and y = [yk] consider the sequence {| xk – yk |}. We have the quadrangle inequalities (see Figure 4.11)

[image: image112.wmf],

kkkmmmmk

xyxxxyyy

-£-+-+-



[image: image113.wmf].

mmmkkkkm

xyxxxyyy

-£-+-+-


Therefore, we get
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The sequences {xk} and {yk} are fundamental. Hence, the terms at this right-hand side of the final inequality tend to zero. Then the rational sequence {| xk – yk |} is fundamental.  Therefore, it determines a real number d.
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Figure 4.11. Quadrangle inequality.
Prove that the value d does not depends from the choice of the fundamental sequences. Choose other fundamental sequences 
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 that determine the numbers x and y. We have the analogical relations
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Therefore, we get the inequality
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Hence, the sequences 
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 are equivalent. Therefore, it determines the same real number. Thus, the number d does not depend from the choice of fundamental sequences that determine the numbers x and y. Hence, for all these number we can determine the concrete real number 
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(see Figure 4.12). 
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Figure 4.12. Metric for real numbers.

Lemma 4.5. The set 
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Proof. The values of d are non-negative values only, because these real numbers are determined by positive fundamental sequences of rational numbers. Besides, 
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 is true, if for the corresponding fundamental sequences {xk} and {уk} the sequence {| xk – yk |} tends to zero only. Therefore, it determines the same real number. Thus, the equality 
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х = у. The equality 
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 is the corollary of the formula | xk – yk | = | yk – xk|. Now we have 

[image: image130.wmf](,)limlimlim(,)(,)

kkkkkk

dxyxyxzzydxzdzy

=-£-+-=+

.
This is the triangle inequality. Therefore, d is the metric of the set of real numbers. (
Denote the value 
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. Then the sequence {xk} of real numbers tends to a real number x, if 
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 This is the definition of the convergence on the space of real numbers. Note that the metric structure of the set of real numbers are consensual with its algebraic and ordered structures. Particularly, if we have the convergence  [image: image135.wmf],
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Our next step is an interpretation of rational numbers as elements of the determined set 
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. We know that fundamental sequences of rational numbers can diverge. However, there exists fundamental sequences with limit. Therefore, the arbitrary equivalent fundamental sequence has the same limit. The corresponding class equivalence determines a concrete real number by Definition 4.6. Each rational number is the limit of a rational sequence. We can choose as this sequence the stationary one with elements equal to this rational number. Therefore, there exists the bijection between the set 
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 of all rational numbers and the subset  
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 of the set of real numbers that are determined by convergent fundamental sequences (see Figure 4.13).      
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Figure. 4.13. The set of rational number is isomorphic to the subset 
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For any rational number x there exists an element х' of the set 
[image: image147.wmf]'

¤

. The stationary sequence with elements equal to x is its representative. On the contrary each element х' of 
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 has convergent fundamental sequences as representative with a same limit x. Each algebraic, topological, etc. property of the set of rational numbers has an analogue on the set 
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. In this situation the set 
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 and 
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 are called isomorphic.
Now consider the very important problem of the approximation of real numbers.
Lemma 4.6. Each real number can be approximated by rational numbers.
Proof. Let x be a real number that is determined by a sequence {xk} of rational numbers. Denote by уk the real number that is determined by the stationary sequence with element xk. For all number n the difference х – уn is determined by the sequence {xk – xn}. Therefore, the value 
| xk –  xn | is small enough for large enough numbers k and n by the definition of the fundamental sequence. Hence, the sequence {x – уn} tends to zero as n((. Then we have the convergence 
уn ( x. Using the isomorphism between the rational numbers хk and the rational real numbers уk, we prove that the arbitrary real number x is the limit of a sequence of rational numbers. Therefore, it can be approximate by rational numbers with arbitrary exactness. (
Remark 4.7. More exact, the set of rational numbers is dense in the space of real numbers by Lemma 4.6. We shell give the exact definition of the density soon.  
The last result is extremely important. This is basis of practical using of the irrational numbers. Indeed, how we can use the irrational numbers, for example, the number (, in calculations? The axiomatic definition is not applicable, because of its non-constructiveness. The interpretation of real numbers as cuts of the set of rational numbers (Dedekind definition) does not use the real information for practical calculation of the irrational number. We can apply infinite decimal fractions (Weierstrass definition), if we now the necessary quantity of digits of this representation. However, the Cantor definition guaranties the possibility of the approximation of the arbitrary real number by rational numbers. For example, the number ( is the sum of the concrete series with rational components. We could use partial sum of this series for obtaining the rational approximation of ( with arbitrary exactness.
Now prove the completeness of the set of real numbers. 
Lemma 4.7. The metric space 
[image: image152.wmf]¡

 is complete.
Proof. Let {yk} be a fundamental sequence of real numbers. Consider a sequence {(k} of rational numbers with zero limit. Using the possibility of the approximation of the arbitrary real number by a rational numbers, we obtain the existence of a rational number хk such that | yk – хk | ( (k. Therefore, we get the inequality
| хm – хn | ( | хm – ym | +  | ym – yn | + | yn – xn | (  (m  +  | ym – yn | + (n.

The sequence {yk} is fundamental. Then value at the right-hand side of the last inequality tends to zero as m,n((. Hence, the sequence {хk} of rational numbers is fundamental. Therefore, it determines a real number у. We have
| yk – у  | ( | yk – хk | + | хk – y |.

The first term at the right-hand side of this inequality is small enough for the large enough value k because the rational number хk approximates the real number yk. The second term tends to zero here because the real number у is determined by the sequence {yk}. Therefore, the arbitrary fundamental sequence of real numbers converges. Hence, the set of real number is complete. Thus we extended the set of rational numbers 
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 to the complete set of real numbers 
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 such that the set 
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 (accurate within isomorphism) is dense to 
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. In this situation, the set of real number is called the completion of the set of rational number. (
We proved the following result.

Theorem 4.2. The set 
[image: image157.wmf]¡

 that is determined by Definition 4.6. is the set of real numbers by Definition 4.7.

Remark 4.8. We could prove that Dedekind definition and Weierstrass definition satisfy all properties that is described by Definition 4.7. Therefore, all these definitions are equivalent.  
Now we would like to extend Cantor’s idea to the general metric spaces.
4.6. Completion of metric spaces
What we have proved just? The space of rational numbers is non-complete. However, it can be extended such that this extension is the complete space. Besides each element of this extension can be approximated by elements of the initial spaces. We would like to obtain the analogical result for the general metric space. Let X be a metric space with metric (. 

Definition 4.13. The subset М of Х is dense XE "множество:плотное" , if each element of X is the limit of a sequence of M. 
For example, the set of all rational numbers is dense in the space of real numbers. If the set M is dense in the metric space X, then each element of X can be approximated by elements of M (see Lemma 4.6).
Definition 4.14. The space Х is isometric to the space Y with metric d, if there exists a bijection A : X ( Y such that the distance between all point after the mappings A and its inverse mapping does not change (see Figure 4.14).  
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Figure 4.14. Spaces Х and Y are isometric.

If the spaces X and Y are isometric, then the following equalities hold
d (Ax,  Ax()  = ( (x, x() (x, x((Х,   ( (y, y()  = d (A-1y,  A-1y() (y, y((Y
If two spaces are isometric, then it have the same metric properties.

Definition 4.15. The complete metric space Y is called the completion of the space X, if X is isometric to a dense subset of Y.  
Particularly, the space of real numbers is the completion of the space of rational numbers by Theorem 4.2.
Note also the quadrangle inequality that is the corollary of the triangle inequality (see Figure 4.15)
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Figure 4.15. Quadrangle inequality.

Our general result is the completion theorem.
Theorem 4.3. For all metric space, there exists its completion. 
Proof. 1. Let X be a metric space with metric (. Consider the set F of all its fundamental sequences. Determine the relation ( on F. Suppose the relation {xk}({уk} on the set F is true if the sequence {((xk,уk)} tends to zero as 
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 It is obviously that ( is the equivalence. The factor-space Y  = F /( is an analogue of the set [image: image162.wmf].

¡

 that is determined by Definition 4.6.
2. For all points х, у of the set Y choose sequences {xk} and {уk} such that {xk} belongs to the equivalence class x, and {yk} belongs to the equivalence class y, that is 
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 Using the quadrangle inequality, we get
( (xm, уm) – ( (xn, уn)  (  ( (xm, xn) + ( (уm, уn),

( (xn, уn) – ( (xm, уm)  (  ( (уm, уn)  + ( (xm, xn). 

Hence, we have the inequality
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The terms at the right-hand side of this formula tend to zero, because the sequences {xk} and {уk}  are fundamental. Therefore, the sequence of real numbers {((xk,уk)} is fundamental too. Then it has the limit because of the completeness of the space [image: image165.wmf].

¡

 Determine the number
[image: image166.wmf]lim

(,)(,).

kk

k

ddxyxy

r

®¥

=

=


This limit can be depends, in principle, from the choice of the concrete fundamental sequences. Let now the sequence {uk} is equivalent to {xk}, and {vk} is equivalent to {уk}. Using the previous technique, obtain the inequality
| ( (uk,vk) – ( (xk, уk) | (  ( (xk, uk) + ( (уk, vk). 

Passing to the limit, we obtain the equality of the limits of the sequences {((uk,vk)} and {((xk,уk)}. Therefore, these sequences determine the same real number, that is the value d(x,y) does not depend from the concrete sequences that definite the classes x and y. It is determined by the elements х and у only. Determine its properties.
The number d(x,y) is non-negative as the limit of the sequence with non-negative elements. Besides, for all element х of Y we get
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If the value d(x,y) is zero, then the fundamental sequences of х and у are equivalent. Therefore, we have the equality х = у. Thus, the condition  d(x,y) = 0  is true if and only if the elements х and у are equal. The symmetry of the functional d follows from the analogue property of the metric (. Besides, for all elements х, у and z with corresponding sequences {xk}, {уk}  and {zk}, we get
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Thus, the functional d is metric. This is the analogue of the metric on the set of real numbers. Therefore, the pair (Y,d) is the metric space.

3. Prove that our initial space X can be interpreted as a part of the obtained space. For all х(Х determine the stationary sequence with element x. It obviously that it is fundamental. Then it determines a class equivalence х'. Determine the operator A : X ( Y  such that Ax = х'. Define the image 
Х' = A(X) (see Figure 4.16). The elements of Х' are determined by converged fundamental sequences only. Note that each element х' of Х' from is determined by the concrete element x. Indeed, the concrete element х' is determined by the convergent sequences of X with same limit. This limit is the element x that corresponds to х'. Therefore, the operator А : Х ( Х' is invertible. 
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Figure 4.16. Isometry of the spaces Х and Х'. 

For all elements х, у of Х determine the value 
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Let these converged sequences be stationary here. Then we have the equality d(Ax,Ay) = ((x,y). For all х', у' of Х' the number d(x',y') is the limit of the numerical sequence {((xk,yk)}. We have the elements of the set Х'. Therefore, we can choose the stationary sequences with elements х = А-1х' and  у = А-1у' as the sequences {xk} and {уk}. Then we obtain the equality 
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Thus, the metric space X is isometric to the subspace Х' of Y (see Figure 4.16).

The isometric sets Х and Х' are isomorphic by the metric spaces theory. Hence, we can interpreted the initial set X as a subset of Y, and the set Y as an extension of the set X. Besides, the elements of initial set can be identified with corresponding equivalence classes. Then we can interpreted it as elements of the set Y. Particularly, the rational numbers can be interpreted as real numbers.
4. Let х be an arbitrary element of the set Y. It is determine by a fundamental sequence {xk}. Using definition of the metric d, we have 

[image: image172.wmf]lim

(,)(,)

kkn

n

dAxxxx

r

®¥

=

,                            

because the equivalence class Axk is determine by the stationary sequence with element xk, and х is determine by the fundamental  sequence {xn}. 

For all ((0 we can choose the numbers k, n such large that the inequality ((xk, xn) < (  holds. Using the last equality, we have the convergence Axk (  x   in Y. Identify the element xk with equivalence class Axk; we get the convergence  xk (  x in Y. Thus, the set Х (in reality, its isometric image by the operator A) is the dense subset of Y. Therefore, each element of the extended set can be approximated by elements of the initial set. Particularly, each real number can be approximated by a rational one.  
5. Consider a fundamental sequence {уk} of the space Y. Let the numerical sequence {(k} tends to zero. Using the density of the inclusion of the set X to Y, we obtain the existence of an element xk of Х with large enough value k such that d(Аxk,yk) < (k. Then we have (see Figure 4.17)
((xm, хn)  =  d (Аxm, Ахn)  (  d (Аxm, ym) + d (ym, yn) + 
+ d (yn, Аxn)  <  (m  + d (ym, yn) + (n 
by the quadrangle inequality. The value at the right side of this inequality tends to zero because of the fundamentality of {уk} and the properties of the sequence {(k}. Therefore, the sequence {xk} is fundamental with respect to the space X. Therefore there exists an element y of Y such that Axk (  у  in Y.

We have the inequality
d (уk, у)  (  d (уk,  Ахk)  +  d (Аxk, y)  <  (k  + d (Аxk, y).
Then we get уk  (  у  in Y. Thus, the arbitrary fundamental sequence of the space Y has a limit. Therefore, this space is complete. Thus, the set X is isometric to the dense subset of the complete metric space Y. Hence, each metric space has a completion. This completes the proof of Theorem 4.3. ( 
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Figure 4.17. Proof of the completeness.
Remark 4.9. The analogue of the completion theorem is true for uniformly spaces too. 

The proof of this theorem gives the technique for practical completion of metric spaces. 
Example 4.6. Space of positive numbers. Consider the space X of positive numbers with standard metric 
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 for all x and y from X. Find its completion. Determine the set F of all fundamental sequences on the set X. The sequences {xk} and {уk} are in the relation ( if 
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 Consider the factor-set 
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 This is the union of the set X' that is determine be the convergent fundamental sequences from X and the set Y' that is determine be the divergent fundamental sequences from X. Note that each divergent fundamental sequence from as is equivalent to the sequence {(k}, where 
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Therefore, the set Y' consists of the unique element  
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 Each element of X' is determine by the stationary fundamental sequence of X, namely by the concrete element of X. Determine the properties of the element (. For all elements 
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 we can determine its sum 
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 Particularly, we have 
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. This value tends to zero. Therefore, the sequences 
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 are equivalent. Hence, it determine the same element of the set Y. Thus, we have the equality 
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 for all element x from Y. Therefore, the element ( can be interpreted as zero. (
The results of using of the completion theorem for the considered examples are given at Table 4.3. Particularly the completion of the set of rational numbers is the set of real numbers. Consider the set X of positive numbers with standard metric. There exist fundamental sequences {xk} here such that for all ( ( 0 there exists a number k(() such that the inequality | xk | < (  is true for all k greater than  k((). These sequences are equivalent. The relevant equivalence class is the number zero. Therefore, the completion of the set of positive numbers is the set of non-negative numbers. We can prove also that the completion of the set of continuous functions and Riemann integrable functions with integral metric is the set of Lebesgue integrable functions

Table 4.3. Completion of metric spaces. 

	non-complete space
	completion 

	rational numbers
	real numbers

	positive numbers
	non-negative numbers

	continuous functions
with integral metric
	Lebesgue integrable functions

	Riemann integrable functions
	Lebesgue integrable functions


Thus, for all fundamental sequence of the arbitrary metric space we can have two different cases only. Maybe this sequence converges. Then its limit is a point of the initial space. However, maybe the fundamental sequence does not have any limits on the initial space. Then we can determine the limit of this sequence on the completion of the initial space. Therefore, we can obtain the convergence of the arbitrary fundamental sequence with respect to the metric of the completion.   

Conclusions

1. The justification of the determination of the mathematical models is based on the passage to the limit. 

2. The definition of the limit is not constructive because it uses a priori knowledge of the limit. 
3. The practical proof of the convergence can be based on the Cauchy criterion that uses the fundamentality of the sequences and does not require a priori knowledge of the limit.
4. The Cauchy criterion is applicable for the complete spaces only.

5. The majority of the spaces is non-complete.

6. The classic example of the non-complete spaces is the set of rational numbers.

7. The divergent fundamental sequences of rational numbers determines the irrational numbers by Cantor.

8. The Cantor’s real numbers are the equivalent classes of the fundamental sequences of rational numbers.

9. The axiomatic definition of real numbers consists of a list of properties that are unique to real numbers.
10. There exists also the definition of real numbers by Weierstrass as the infinite decimals. 

11. The real numbers by Weierstrass satisfies all properties from the axiomatic definition of real numbers.

12. The Cantor’s real numbers satisfies to all properties from the axiomatic definition of real numbers too, i.e. this is equivalent to the Weierstrass definition.

13. Each irrational number can be approximated by rational numbers.

14. The space of real numbers is complete.

15. The Cantor’s method of determination of the real numbers is a basis of the completion of the arbitrary metric spaces.

16. By the completion theorem, each metric space can be extended to a complete metric space such that all elements of this extension can be approximated by elements of the initial space.

17. By completion theorem, each fundamental sequence of the arbitrary space is convergent; however, its limits can be elements of the extension of the initial space.

We shell try to use the considered technique that is the sequential method for the justification of mathematical models. However, at first, we consider different sequential objects, which are the results of application of the sequential method to the different non-complete spaces.
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